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This paper discusses the application of the Ffowcs Williams/Hawkings equation to
two-dimensional problems. A two-dimensional version of this equation is derived,
which not only provides a very efficient way for numerical implementation, but also
reveals explicitly the features of the source mechanisms and the characteristics of the
far-field noise associated with two-dimensional problems. It is shown that the sources
can be interpreted, similarly to those in three-dimensional spaces, as quadrupoles
from turbulent flows, dipoles due to surface pressure fluctuations on the bodies in the
flow and monopoles from non-vanishing normal accelerations of the body surfaces.
The cylindrical spreading of the two-dimensional waves and their far-field directivity
become apparent in this new version. It also explicitly brings out the functional
dependence of the radiated sound on parameters such as the flow Mach number and
the Doppler factor due to source motions. This dependence is shown to be quite
different from those in three-dimensional problems. The two-dimensional version is
numerically very efficient because the domains of the integration are reduced by
one from the three-dimensional version. The quadrupole integrals are now in a
planar domain and the dipole and monopole integrals are along the contours of the
two-dimensional bodies. The calculations of the retarded-time interpolation of the
integrands, a time-consuming but necessary step in the three-dimensional version, are
completely avoided by making use of fast Fourier transform. To demonstrate the
application of this, a vortex/airfoil interaction problem is discussed, which has many
practical applications and involves important issues such as vortex shedding from the
trailing edge.

1. Introduction
Many acoustic problems in engineering applications can be approximated as two-

dimensional, sound generation by leading-edge slats in aircraft high-lift systems (Guo
1997) and local flows in flap side edge regions (Hardin 1980; Sen 1996; Guo 1999)
being just two examples associated with aircraft noise. This kind of approximation
can greatly simplify the task of acoustic modelling, by reducing computational ef-
forts by orders of magnitude, both in the near-field and the far-field calculations.
For the latter, a widely used approach is the Ffowcs Williams/Hawkings equation
(1969), which is cast for three-dimensional geometry with the results expressed in
terms of volume and surface integrals. In principle, this result can be applied to
both three- and two-dimensional problems. When it is applied to two-dimensional
problems, the source domains are treated as three-dimensional, but with identical
source distributions in one direction to simulate the two-dimensional nature of the
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applications. This is not only inefficient, but also prone to failure. It is inefficient
because the integrations have to be carried out over a large range in the direction
in which the sources are invariant. It is prone to failure because the invariance of
sources in this direction makes the convergence of the integrals critically depend on
the retarded-time variations of the integrands. Furthermore, the functional depen-
dence of the far-field sound on parameters such as flow Mach numbers, the Doppler
factor and the propagation distance, which may be quite different from those in
three-dimensional problems, are all buried in the numerical integrations, making the
understanding of the source mechanisms difficult. This makes it desirable to develop
an explicitly two-dimensional version of the Ffowcs Williams/Hawkings equation,
and it is the topic of this paper.

The derivations of the Ffowcs Williams/Hawkings equation in two-dimensional
planes are different from those in three-dimensional spaces. This is essential because
of the different behaviour of the Green functions of the wave equation in the two cases.
In a three-dimensional space, the Green function is simply a Dirac delta function,
implying that a pulse generated by a source would propagate away from the source as
a pulse with its shape remaining unchanged and its amplitude decaying according to
the law of spherical spreading. In a two-dimensional plane, however, a pulse from the
source would propagate away from it in the form of a wavefront followed by a long
tail. The shape of the signal in the far field is very different from that at the source
and its amplitude decay follows the cylindrical spreading. This behaviour clearly
manifests itself in the mathematical form of the Green function, which is given by
a Heaviside function with an amplitude that becomes singular at the wavefront and
decays slowly in the tail following the wavefront (e.g. Crighton 1975). This particular
form of the two-dimensional Green function makes it difficult to derive the Ffowcs
Williams/Hawkings equation in the form of retarded-time integrals, as is done in
three-dimensional spaces by making use of the Dirac delta function. To overcome this
difficulty, we will use the two-dimensional Green function in the form of its Fourier
integral representation. This, after some mathematical manipulations, enables us to
reduce the result to a form very similar to that in three-dimensional problems. In this
two-dimensional version, we will show that the noise sources are interpreted in the
same way as those in three dimensions. The sound is now given by an integral over
a planar domain in which turbulence sources have non-zero strengths, together with
two contour integrals over the outlines of the two-dimensional bodies in the flow
with the integrands respectively determined by the unsteady pressures and normal
accelerations on the bodies. This is clearly the same interpretation of the noise source
mechanisms as for three-dimensional flows, but with the source domains reduced by
one dimension.

Clearly, this two-dimensional version requires much less computational effort than
that required by applying the three-dimensional version to two-dimensional problems,
because of the reduction in integration domains. For example, the dipole term that
is given by the unsteady pressures on the body surface can now be computed along
a contour, instead of over a surface, which differ in computational time by orders
of magnitude. The computational effort is further reduced by completely avoiding
the retarded-time calculation so that no interpolation is needed in the calculation of
the integrands. This is a time-consuming but necessary step in the three-dimensional
version because the sampling at emission time, often from near-field computations,
does not usually coincide with the sampling at receiving time. Thus, interpolations
have to be used to find the values of the integrands at the retarded time for the
integration. This is avoided in the two-dimensional version by making use of Fourier
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transforms, which does not add any noticeable computation effort because numerical
fast Fourier transformation is very efficient.

We will show that the two-dimensional version of the Ffowcs Williams/Hawkings
equation explicitly brings out the characteristics of the far-field noise unique to two-
dimensional problems. The propagation of the waves will be characterized explicitly
by cylindrical spreading with two-dimensional far-field directivities. The amplitudes
of the waves decay according to the inverse of the square root of the propagation
distance. The dependence of the far-field radiation on the flow Mach number is
also explicitly brought out: the acoustic pressure scales on power laws of the flow
Mach number with power indices given by (2n + 3)/2, where n = 0, 1, 2 respectively
for monopoles, dipoles and quadrupoles. These are different from those for three-
dimensional sources, and have been previously discussed (e.g. Ffowcs Williams 1969;
Crighton 1975). It will be shown that the sound fields from the three different types of
sources experience different amplitude amplification due to the Doppler effect when
the sources are in motion. The amplification is in terms of power laws of the Doppler
factor, with power indices given by (2n + 1)/2, which again is again quite different
from those for three-dimensional sources.

The explicit functional dependence of the radiated sound on flow parameters can
help understand and interpret better source mechanisms in practical applications.
A typical example is the noise from leading-edge slats of aircraft high-lift systems.
Airframe noise intensity has long been observed to scale on the flow Mach number
according to the 5th power law in the middle frequency domain centred at about
1000 Hz. This coincides with the prediction of sound scattered from turbulent flows
by a sharp edge (Ffowcs Williams & Hall 1970). Thus, this component of airframe
noise has been attributed to the sharp trailing edges of the wings (e.g. Bauer &
Munson 1978; Fink 1979). While this may explain airframe noise from clean wing
configurations when the high-lift systems are not deployed (Crighton 1991), it is not
supported by recent test data (Sen et al. 1997; Guo et al. 1999). The data show that
airframe noise in the middle frequency domain is dominantly generated in the slat
region, probably due to flow separation in the cove region of the slats (Guo 1997),
instead of the trailing edges of the wings. In this case, the 5th power law is more
likely to be associated with the two-dimensional nature of the sources, rather than the
sharp-edge scattering. The sharp edges of the slats, namely their cusps and trailing
edges, are in a relatively ‘clean’ flow without intense turbulence fluctuations. Thus,
the scattering, if any, would be relatively weak because according to the theory by
Ffowcs Williams & Hall (1970), strong scattering occurs only when intense turbulence
fluctuations exist in a region close to the sharp edges within a typical wavelength.
Also important to note is that the 5th power law from sharp-edge scattering results
from the assumption of potential flow at the edge where the flow becomes singular.
If the flow is regular at the edge as commonly implied when the Kutta condition
is applied, the scattered noise would not follow the 5th power law, which is also
explicitly pointed out in Ffowcs Williams & Hall (1970). All this indicates that the
experimentally observed 5th power law of the middle frequency component in airframe
noise may be more satisfactorily understood by the two-dimensional nature of the
sources associated with the slats, rather than the sharp-edge scattering mechanism.

To illustrate the application of the two-dimensional version of the Ffowcs Williams/
Hawkings equation, we will discuss a vortex/airfoil interaction problem where a
concentrated vortex is incident upon a two-dimensional airfoil in a uniform mean
flow. In response to the fluctuations caused by the incident vortex, vorticity is shed
from the trailing edge of the airfoil, leading to further fluctuations. The problem is
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simple enough to be analysed easily, but yet has practical applications (e.g. Howe 1978;
Brooks & Hodgson 1981; Amiet 1976). It also involves the issue of the Kutta condition
at sharp edges in acoustic applications, a topic that has a long history of research
and discussion (e.g. Howe 1976; Crighton 1981, 1985; Amiet 1990). For acoustic
modelling, it is now well-known that the absence of the Kutta condition over-predicts
the radiated noise (Howe 1976) and in general, the Kutta condition applies provided
that the Strouhal number is not larger than the flow Reynolds number to the power
of 1

4
(Crighton 1991). This is almost always the case for aircraft applications where

the airfoil may represent individual components of the aircraft high-lift systems or
individual blades of rotors. To impose the Kutta condition, we will follow a nonlinear
flow separation model, based on the Brown & Michael (1954) equation and recently
improved by Howe (1996). In this model, flow separation is accounted for by unsteady
vorticity production at the sharp edge. The shed vorticity is in the form of a vortex
sheet, connecting the edge with a vortex core that accumulates the shed vorticity
through the vortex sheet. Under the joint effects of local convecting flows and the flow
induced by the vortical field, the vortex core experiences fully nonlinear motions and
unsteady strength fluctuations, both of them being potential noise sources according
to the theory of vortex sound (Powell 1964; Howe 1975). With this model, the near-
field flow will be solved, including unsteady pressure fluctuations on the airfoil surface.
The surface pressures will then be used to calculate the far-field noise by implementing
the two-dimensional version of the Ffowcs Williams/Hawkings equation.

2. The Ffowcs Williams/Hawkings equation in two-dimensional format
We start with the generalized wave equation derived by Ffowcs Williams & Hawk-

ings (1969) that combines the equations governing the conservation laws of unsteady
flows with a wave equation driven by sources due to flow fluctuations, as originated
by Lighthill (1952). In two-dimensional notation, this equation reads(

1

c2

∂2

∂t2
− ∂2

∂x2
α

)
H(f) p(xα, t) = Q(xα, t), (2.1)

where the flow-generated sound is represented by the fluctuating pressure p(xα, t), t
being time and xα(α = 1, 2) being the coordinates in two dimensions. The flow is in
the region outside any bodies, whose surfaces are given by the equation,

f(xα, t) = 0, (2.2)

so that the Heaviside function H(f) in (2.1) is equal to unity and zero respectively
outside and inside the bodies. A schematic illustration of the problem, together with
the coordinate systems, is given in figure 1. Away from the flow region, the only
disturbances are assumed to be acoustic, characterized by the wave operator on the
left-hand side of (2.1) with constant sound speed c. The wave operator is driven by
sources collectively denoted by Q with the definition

Q(xα, t) =
∂2H(f)Tαβ
∂xα∂xβ

− ∂

∂xα

(
∂H(f)

∂xβ
Pαβ

)
+
∂

∂t

(
∂H(f)

∂xα
ρ0uα

)
. (2.3)

Here, ρ0 is the constant mean density and the subscripts α and β are used to
emphasize the two-dimensional nature of the problem with α, β = 1, 2. As in the
three-dimensional case, the sources are given by three terms: the Reynolds stress
tensor Tαβ , the surface stress Pαβ and the velocity of the bodies uα. The last two
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terms can be identified as surface quantities because the derivative of the Heaviside
functions yields

∂H(f)

∂xα
= δ(f)

∂f

∂xα
, (2.4)

where δ is the Dirac delta function. Because of the Heaviside function, equation (2.1)
is valid in the entire xα-plane so that it can be solved by making use of the Green
theorem. Symbolically, the solution is simply

p(xα, t) =

∫
yα

∫
τ

Q(yα, τ)G(xα − yα, t− τ) d2yα dτ, (2.5)

with G denoting the free-space Green function and the integrations performed over
the entire source plane yα and source time τ. For two-dimensional problems, the
Green function can be conveniently expressed in terms of its Fourier transform
representation (e.g. Crighton 1975),

G =
i

8π

∫
ω

H(1)
0 (kR)e−iω(t−τ) dω. (2.6)

Here, H(1)
0 is the zeroth-order Hankel function of first kind that has outgoing wave

behaviour when its argument kR is much larger than unity, where k = ω/c is the
acoustic wavenumber, ω being the angular frequency, and R = |xα−yα| is the distance
between source and receiver. When (2.3) and (2.6) are substituted into the solution
(2.5), the integrations in source-plane and time can be carried out in part so that the
differentiations are transferred onto the Hankel functions. This leads to

p(xα, t) =
i

8π

∫
ω

∫
yα

∫
τ

{
H(f)Tαβ

∂H(1)
0 (kR)

∂yα ∂yβ

+ Pαβ
∂H(f)

∂yβ

∂H(1)
0 (kR)

∂yα
+ ρ0AαH

(1)
0 (kR)

∂H(f)

∂yα

}
e−iω(t−τ) dω d2yα dτ. (2.7)

Here, to facilitate the physical interpretation of the sources, we have introduced the
acceleration of the body surfaces Aα, defined by

Aα = ∂uα/∂τ. (2.8)

The two terms on the second line of (2.7) can now be simplified further by making
used of (2.4). To do this, the coordinate system yα for the spatial integration is changed
to ηα which is fixed on the moving body so that the function f defined in (2.2) is
independent of time in this new coordinate system. The change of coordinate systems
can be expressed as

yα = ηα +

∫ τ

Uα(τ
′) dτ′, (2.9)

where Uα is the velocity of the moving body in the α-direction. Note also that the
result before the ω-integration in (2.7) is precisely the Fourier transform of p(xα, t)
with respect to t, namely its spectrum. This, together with the use of (2.2) to reduce
the planar integration to contour integration, leads to

p̃(xα, ω) =
i

4

∫
ηα

∫
τ

Tαβ
∂2H(1)

0 (kR)

∂ηα ∂ηβ
eiωτ dτ d2ηα

+
i

4

∫
S

∫
τ

(
Pαβ nβ

∂H(1)
0 (kR)

∂ηα
+ ρ0AαnαH

(1)
0 (kR)

)
eiωτ dτ ds, (2.10)
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Figure 1. Schematic of the problem of sound generation by a two-dimensional body moving at
velocity U. The coordinate system (η1, η2) moves with the body and the fixed coordinate system is
(x1, x2).

where nα is the α-component of the outward unit normal for the body surface and
the title denotes quantities in the Fourier transform domain, defined by

p̃(xα, ω) =

∫
t

p(xα, t)e
iωt dt and p(xα, t) =

1

2π

∫
ω

p̃(xα, ω) e−iωt dω. (2.11)

The first line in (2.10) is a planar integral with the domain of integration in the flow
where the unsteady quantity Tαβ is non-zero. The second line is basically a contour
integral, along the outline of the two-dimensional body, denoted by S .

This is clearly very similar to the three-dimensional version derived by Ffowcs
Williams & Hawkings (1969), in that the sources are interpreted as quadrupoles,
dipoles and monopoles. The integration domains for the integrals, however, are
reduced, respectively from spaces and surfaces to planes and contours. Another
difference between the two cases is that the three-dimensional version is in terms of
retarded-time integrals while (2.10) does not involve any retarded-time calculation,
but with its integrands essentially expressed in terms of Fourier transforms (which will
become even more apparent in the next section). It is known that the retarded-time
integrals in the three-dimensional version results from the three-dimensional Green
function in the form of the Dirac delta function. That feature is absent in the two-
dimensional result (2.10) because the Green function in this case cannot be expressed
as simply as a Dirac delta function. The space–time Green function can be derived
from (2.6) as (e.g. Ffowcs Williams 1969; Crighton 1975)

G(xα − yα, t− τ) =
c

2π

H[c(t− τ)− |xα − yα|]
[c2(t− τ)2 − |xα − yα|2]1/2

. (2.12)

This difference in the mathematical forms reflects a fundamental difference in the
behaviour of the waves in the two cases. For a three-dimensional source, a signal
generated by a source would propagate away from it and reach an observer at the
retarded time with the shape of the signal unchanged, precisely the behaviour of the
Dirac delta function. For a two-dimensional source, however, (2.12) shows that the
signal would reach the observer with a singular wavefront followed by a long tail.
The signal is spread in time with decaying amplitude in the tail. Thus, the observer
receives the waves at all time after the retarded time.

When numerically implementing (2.10), the derivatives of the Hankel functions can
be simplified by making use of the recursive relations between Hankel functions. In
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particular, we have

∂2H(1)
0 (kR)

∂ηα∂ηβ
=
k(xα − yα)(xβ − yβ)

R3
(2H(1)

1 (kR)− kRH(1)
0 (kR)), (2.13)

and

∂H(1)
0 (kR)

∂ηα
=
k(xα − yα)

R
H(1)

1 (kR), (2.14)

where yα is given in terms of ηα by (2.8) and H(1)
1 is the first-order Hankel function of

the first kind. These results are also useful when discussing the far-field characteristics,
as is done in the next section.

3. Far-field characteristics
The far-field behaviour of the radiated sound in two-dimensional problems can be

studied using (2.10) with the usual far-field assumption that the observation point is
far away from the sources:

|xα| � |yα| and kR � 1. (3.1)

Under these conditions, the Hankel functions in (2.13) and (2.14) have the asymptotic
form {

H(1)
0 (kR)

H(1)
1 (kR)

}
=

{
1
−i

}(
2

πkR

)1/2

ei(kR−π/4). (3.2)

Further simplification can be made by noting that 1/R reduces to 1/|xα| in the far
field and the phase function in (3.2) can be approximated by

exp (ikR) = exp (ik|xα| − ikyαx̂α), (3.3)

which comes from expanding kR at large |xα| and denoting

x̂α = xα/|xα|. (3.4)

With this, the three terms involving the Hankel functions in (2.10) reduce to
∂2H(1)

0 (kR)/∂ηα ∂ηβ

∂H(1)
0 (kR)/∂ηα

H(1)
0 (kR)

 =


−k2x̂αx̂β

−ikx̂α

1


(

2

iπk|xα|
)1/2

eik|xα`ikyαx̂α . (3.5)

By substituting this into (2.10), we have the far-field sound pressure in the form

p̃(xα, ω) = eik|xα|
(

1

8iπk|xα|
)1/2{

−ik2x̂αx̂β

∫
ηα

T̃αβ(ηα, ωD)e−ikηαx̂α d2ηα

+ kx̂α

∫
S

nβP̃αβ(ηα, ωD)e−ikηαx̂α ds+

∫
s

ρ0nαÃα(ηα, ωD) e−ikηαx̂α ds

}
. (3.6)

Here, the integrands are all near-field quantities in the frequency domain calculated
at the Doppler-shifted angular frequency ωD , defined by

ωD = ωD = ω(1−Uαx̂α/c), (3.7)

with D being the Doppler factor. In deriving this, we have assumed that the velocity
of the moving body is constant so that Uα is independent of the source time τ. This is



208 Y. P. Guo

usually the case for airframe noise problems where the aircraft speed is approximately
constant during the time interval at landing approach in which noise radiation is a
concern.

Two features can be immediately seen from the result (3.6). The first is the far-
field characteristics of the radiated sound, including the cylindrical spreading of the
waves in the far field, indicated by the inverse square-root dependence of the pressure
on |xα| and the directivities associated with each of the three source types. The
cylindrical spreading is a well-known feature of two-dimensional waves, but it not
explicitly brought out in the original Ffowcs Williams/Hawkings equation, though
that equation is in principle also valid for two-dimensional sources. The second is
the absence of the retarded-time calculations in the integrals. Instead, the planar and
contour integrals are calculated in the frequency domain with the proper Doppler
shift in frequency. This is an advantage over the retarded-time formulation. Because
the sampling of source time history does not usually coincide with the retarded time,
the integration in the original Ffowcs Williams/Hawkings equation requires data
interpolation, a very time-consuming but necessary step in that formulation. This is
completely avoided here. It should also be pointed out that the extra calculations of
the Fourier transformations in (3.6) for the near-field quantities are actually trivial.
This is basically because numerical fast Fourier transform (FFT) is very efficient
compared with other operations in the computation. Besides, in many situations, the
spectral properties of the near-field quantities are of interest themselves so that near-
field results in the frequency domain may be already available from the near-field
modelling. In that case, there is no extra calculation in the far-field computation by
(3.6).

As mentioned in previous sections, the original Ffowcs Williams/Hawkings equa-
tion is in principle valid for both three- and two-dimensional problems. It can be
applied to two-dimensional problems provided that the source domains (the domains
of integration) are regarded large in one direction to simulate the two-dimensional
behaviour. Apart from the difficulty in explicitly bringing out the physics of the
sources and their sound, that approach is also very inefficient. This is because the
integration must be performed over a long range in that direction with an invariant
source distribution but with variations due to the retarded-time calculation. Clearly,
the result (3.6) not only avoids the retarded-time calculation, but also reduces all
the integrals by one dimension, from spaces and surfaces respectively to planes and
contours. This makes a difference in computational efficiency by orders of mag-
nitude. Furthermore, the explicit two-dimensional result (3.6) also avoids the issue
of convergence when applying the original Ffowcs Williams/Hawkings equation to
two-dimensional problems. In that case, because the sources are invariant in one
dimension and the three-dimensional Green function only provides a decay of the
inverse distance, namely 1/|yα| at large |yα|, the convergence of the integrals in this
direction critically depends on the variations of the sources with the retarded time.
In that formulation, the convergence of the spatial integrals is achieved only if the
sources decay sufficiently rapidly at large time.

The result (3.6) can also be normalized to explicitly reveal the functional dependence
of the radiated sound on parameters such as the flow Mach number and the Doppler
factor due to the source motions. To this end, we follow the convention of dimensional
analysis by scaling the near-field quantities according to

{Tαβ, Pαβ, Aα} ∼ {ρ0U
2, ρ0U

2, U2/l}, (3.8)

where U is the typical value of the flow velocity and l the typical length scale of the
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sources. With this, the three terms in the result (3.6) can all be normalized and the
far-field pressure becomes

p(xα, t) = ρ0c
2

(
l

8π|xα|
)1/2{

x̂αx̂βQαβ
M7/2

D5/2
+ x̂αFα

M5/2

D3/2
+ S

M3/2

D1/2

}
, (3.9)

where three non-dimensional quantities Qαβ , Fα and S are introduced for brevity.
They are basically the three integrals in (3.6) normalized by (3.8), and thus can be
regarded as the integrated source functions respectively for quadrupoles, dipoles and
monopoles; they are all of the order of unity. This non-dimensional result brings out
the physical features of the radiated sound. Apart from the cylindrical spreading and
far-field directivities already analysed in (3.6), it also explicitly shows how the sound
radiation depends on the flow Mach number M and the Doppler factor D. It is easy
to summarize from (3.9) that

p ∼ M(2n+3)/2

D(2n+1)/2
, (3.10)

where n = 0, 1, 2 respectively for monopoles, dipoles and quadrupoles. Note that
the Mach number dependence precisely recovers that discussed previously based on
dimensional analysis (e.g. Ffowcs Williams 1969; Crighton 1975). The first term in
the curly brackets in (3.9) also recovers the results derived in Ffowcs Williams &
Hawkings (1968) for shallow-water waves generated by quadrupole sources (unsteady
flows). In that paper, the approach of retarded-time integration is used to derive the
wave field. It explicitly brings out the two-dimensional features of the shallow-water
wave but is not very convenient for numerical computation because of the inverse
square-root singularities in the integrand.

4. Near-field formulation for vortex/airfoil interaction
To demonstrate the application and numerical implementation of the two-dimensional

version of the Ffowcs Williams/Hawkings equation, we choose to work with a
Joukowski airfoil moving at constant velocity U in the negative x1-direction and
interacting with a concentrated vortex of constant strength. For sufficient low flow
Mach number, the near-field flow can be approximated as incompressible. As illus-
trated in figure 1, the near field will be solved in the coordinate system fixed on
the airfoil. The relation between the two coordinate systems is given by (2.9) in the
previous section and is simply x1 = η1 − Ut and x2 = η2. In this reference frame,
the airfoil is embedded in a uniform flow of velocity U in the positive x1-direction
and subject to the incidence of an incoming vortex. The choice of the Joukowski
airfoil, together with the incompressible assumption, enables us to solve the problem
analytically by the conforming mapping

η = f(ζ) = e−iα

(
ζ + b− ζe +

b2

ζ + b− ζe
)
, (4.1)

which transforms the airfoil into a circle, where η = η1 + iη2 are the complex
coordinates in the physical plane fixed on the airfoil and ζ = ζ1 + iζ2 are the
transformed coordinates in the mapping plane. The angle of attack of the airfoil is
denoted by α and the parameter b sets the origin of the coordinate system in relation
to the trailing edge of the airfoil, as shown in figure 2. The quantity ζe is the point
on the circle corresponding to the sharp trailing edge. It is given by

ζe = (a2 − h2)1/2 − ih, (4.2)
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Figure 2. A Joukowski airfoil in a uniform mean flow in the physical plane (η1, η2) and its
conforming mapping to a circle in the mathematical plane (ζ1, ζ2). The mean flow directions in the
two planes are different because of the non-zero angle of attack of the airfoil.

where a is the radius of the transformed circle and h is a parameter determining the
shape and thickness of the airfoil.

The flow is disturbed by a vortex of constant strength Γ0 whose trajectory is denoted
by η0(t) in the complex physical plane and by ζ0(t) in the mapping plane. Because of
the incoming vortex, flow fluctuations are produced and the airfoil responds to these
fluctuations by shedding vorticity from its trailing edge. The shed vorticity will also
be represented by discrete vortices with strength Γj(t) and trajectories ηj(t) and ζj(t),
respectively in the physical and mapping plane, where j = 1, 2, . . . N, with N being
the total number of vortices shed from the trailing edge. The strengths of the shed
vortices vary with time and will be determined by the emendated Brown & Michael
equation (Brown & Michael 1954; Howe 1996). The complex velocity potential W is
simply given by the circular theorem in the mapping plane, namely

W (ζ) = U

(
ζe−iα +

a2

ζe−iα

)
+
Γc

2πi
ln ζ +

1

2πi

N∑
j=0

Γj ln
ζ(ζ − ζj)
a2 − ζζ∗j , (4.3)

where Γc is the circulation around the airfoil and the asterisk indicates complex
conjugate. The circulation around the airfoil is necessary to provide the airfoil with
lift and to satisfy the Kutta condition at the sharp trailing edge. Clearly, the value of
the circulation approaches that for steady flows when the incoming vortex is far from
the airfoil, either at large negative or large positive time. That limiting value is given
by the classic result

Γc(±∞) = 4πaU sin(φe − α), (4.4)

with φe being the argument of ζe defined by (4.2). Note that the change in the
circulation of the airfoil must be balanced instantly by the shedding at the trailing
edge so that we have

d(ΓN + Γc)/dt = 0, (4.5)

where we have labelled the Nth vortex as the one that is still connected to the trailing
edge. Those shed at previous times and having moved away from the edge do not
have strength fluctuations, and hence do not appear in the time derivatives in (4.5).
This equation can be integrated to yield

Γ = Γc +

N∑
j=0

Γj = Γ0 + Γc(±∞), (4.6)

which is basically the statement of vorticity conservation. Here, we have used Γ to
denote the total vorticity in the flow, including that around the airfoil. Note that the
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integration of (4.5) to yield the total vorticity (4.6) is done in a piecewise manner
in time, because each of the shed vortices has a different time interval in which its
strength varies with time. This is why the strengths of all the vortices are in the
integrated conservation law, but only one appears in the differential form of this law
(4.5), which represents an instantaneous relation.

From the complex potential (4.3), the flow velocity is simply given by

u1 − iu2 =
dW

dη
=

1

f′(ζ)
dW

dζ
, (4.7)

where f′ is written for dη/dζ which can be easily found from (4.1) as

f′(ζ) = e−iα

(
1− b2

(ζ + b− ζe)2

)
, (4.8)

and the quantity dW/dζ is given by (4.3) as

dW

dζ
= U

(
e−iα − a2

ζ2e−iα

)
+

Γ

2πiζ
+

1

2πi

N∑
j=0

Γj

(
1

ζ − ζj +
ζ∗j

a2 − ζζ∗j
)
. (4.9)

The results (4.7) to (4.9) give the velocity in the flow except at the vortex locations
when ζ → ζj . At these locations, the velocity must be determined by the Roth rule
that excludes the singular contributions from the vortex motions of the individual
vortex itself. The regular part of the total velocity is the one with which the individual
vortex moves. By denoting the velocity of the kth vortex by Vk , the mathematical
form of the Roth rule reads

Vk = lim
η→ηk

(
dW

dη
− Γk

2πi

1

η − ηk
)

=
1

f′(ζk)
lim
η→ηk

(
dW

dζ
− Γk

2πi

f′(ζ)
f(ζ)− f(ζk)

)
. (4.10)

The last step follows from the use of (4.7) and (4.1). By carrying out the limiting
operation, this result can be rewritten as

Vk =
1

f′(ζk)

{
U

(
e−iα − a2

ζ2e−iα

)
+

Γ

2πiζ
+

1

2πi

N∑
j=0

Γj

(
βkj +

ζ∗j
a2 − ζkζ∗j

)}
, (4.11)

where

βkj =

{
(ζk − ζj)−1 for k 6= j

−0.5f′′(ζk)/f′(ζk) for k = j,
(4.12)

with f′′ defined by

f′′(ζ) =
d2η

dζ2
=

2e−iαb2

(ζ + b− ζe)3
. (4.13)

The above results specify the near-field flow in terms of the vortex strengths Γj
and trajectories ζ(t) with j = 0, 1, 2, . . . N. These quantities have to be determined by
incorporating flow separation models in the formulation. This will be done through
the emendated Brown & Michael equation (Brown & Michael 1954; Howe 1996).

In this model, the fully viscous process of flow separation in the local region close
to the trailing edge of the airfoil is modelled as unsteady vorticity production in
potential flow at the sharp edge, in the form of vortex shedding. The motions and
the strength fluctuations of the shed vortices are governed by local dynamics and the
rate of shedding is determined by the unsteady Kutta condition at the sharp edge
that requires finite velocity at the edge. The physical reasoning and assumptions of
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this model have been discussed previously in the literature and will not be repeated
here. The only new part we introduce here is the mechanism by which the vortex
breaks away from the trailing edge. At any time, the model assumes that a vortex is
connected to the edge through a vortex sheet that feeds vorticity shed from the edge to
the vortex core. The vortex core can also be regarded as the result of the vortex sheet
roll-up. For the airfoil/vortex interaction problem, the flow fluctuations cause both
positive and negative vortex shedding. The shed vorticity forms a distribution along
the vortex sheet. The formation of discrete vortices results from the local evolution
of the vortex sheet. We argue that the vortex sheet stretches most significantly at
locations where the vorticity distribution changes sign. This provides a mechanism to
implement the breakaway of the shed vortices from the edge. A vortex is connected to
the edge and is fed with vorticity so that its strength varies monotonically with time
until the rate of shedding becomes zero. At this time, the vortex breaks away and
its strength will remain unchanged afterwards. The flow separation will be accounted
for from that time by a new vortex. This way, the flow separation induces a series of
vortices forming the airfoil wake.

By balancing the local momentum equation on the vortex sheet, as is done by
Howe (1996), the equations for the motions of the vortices can be derived. Without
repeating the procedure, we quote the equation as

dxk
dt
· ∇Ψi +

Ψi

Γk

dΓk
dt

= vk · ∇Ψi. (4.14)

Here, xk is the trajectory vector of the kth vortex with strength Γk , both being a
function of time. The quantity Ψi is the stream function of the potential flow around
the airfoil of zero circulation with unity velocity at infinity in the ith direction (i = 1, 2).
The velocity vk is the local flow velocity at the location of the kth vortex without
the singular contribution from the vortex itself. It is given in (4.11) in complex form.
Equation (4.14) is expressed in terms of quantities in the physical plane. To facilitate
the incorporation of this model into the near-field formulation in terms of complex
variables in the mapping plane, we convert (4.14) into complex variable format. This
can be done by replacing xk by ηk , vk by Vk and Ψi by the imaginary part of its
complex potential. Thus, (4.14) can be re-written as

Im

{(
dηk
dt
− V ∗k

)
dWi

dη
+
Wi

Γk

dΓk
dt

}
= 0, (4.15)

where Im means the imaginary part of its argument and Wi is the complex potential
around the airfoil of zero circulation with unity velocity at infinity in the ith direction
(i = 1, 2). This result can be converted to a form without the imaginary sign Im by
re-writing it in terms of the difference between the quantity in the curly bracket and
its complex conjugate. Some straightforward algebra then leads to{(

dηk
dt
− V ∗k

)
dWi

dη
+
Wi −W ∗

i

Γk

dΓk
dt

}(
dW ∗

i

dη

)−1

=

(
dηk
dt
− V ∗k

)∗
. (4.16)

This result is cast in such a way that the right-hand side is independent of Wi. Thus,
when it is applied to i = 1 and i = 2, the left-hand sides of the two resulting equations
should be equal, which leads to a single equation for dηk/dt. By further noting that
dηk/dt = f′(ζk) dζk/dt, we finally have

dζk
dt

+
B(ζk)

Γk

dΓk
dt

=
V ∗k
f′(ζk)

, (4.17)
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where B is determined by Wi and defined as

B(ζ) =

{
Im(W1)

dW ∗
2

dζ
− Im(W2)

dW ∗
1

dζ

}/
Im

(
dW1

dζ

dW ∗
2

dζ

)
= ζ
|ζ|2 − a2

|ζ|2 + a2
. (4.18)

Here, the last step follows from the use of the complex potential

W1(ζ) = ζe−iα +
a2

ζe−iα
and W2(ζ) = −iζe−iα +

iα2

ζe−iα
. (4.19)

These are simply the complex potentials for the airfoil in steady flow without circu-
lation.

To determine the vortex motions from (4.17), an extra condition must be specified
for the vortex strengths, which also appear in (4.17) as unknowns. This is provided by
the unsteady Kutta condition applied at the sharp trailing edge. The Kutta condition
requires that the velocity at the edge should always be finite. It is clearly satisfied
provided that dW/dζ, given by (4.9), vanishes at the edge. This leads to

Γ0 +

N∑
j=0

Γj
a2 − |ζj |2
|a2 − ζjζ∗e |2 = 0, (4.20)

where ζe is the point on the circle in the mapping plane corresponding to the sharp
trailing edge in the physical plane, given by (4.2). This then establishes the relation
between the strengths and the trajectories of the vortices. Note that the strength of
the vortex that is still connected to the sharp edge varies with time.

5. Analysis of near-field results
The near-field flow can now be solved from the formulation in the previous section.

For a given incoming vortex, (4.17) and (4.20) can be used to find the strengths Γj and
trajectories of the vortices in the mapping plane, namely, ζj(t) with j = 0, 1, 2, . . . N.
The results can then be used to derive the vortex trajectories in the physical plane
according to (4.1). In the numerical computations given in the following, we normalize
all length quantities by the radius of the circle, a, in the mapping plane. The constant
mean flow velocity U will be used as the reference velocity scale. Thus, the velocity
potentials and the vortex strengths are all normalized by aU, and time by U/a. The
time scale is set so that the incoming vortex crosses the η2-axis at t = 0. Also, the
airfoil is determined by setting b = 0.9 and h = 0.1, which lead to the airfoil shape
shown in figure 2. The strength of the incoming vortex is chosen to be Γ0/aU = 0.1
and the airfoil angle of attack α is set at 5◦.

Because of the fluctuations induced by the vortex motions, the airfoil experi-
ences fluctuations in its circulation. This is shown in figure 3, which plots the
non-dimensional circulation Γc/aU as a function of the non-dimensional time tU/a.
At both large positive and negative time when the incoming vortex is far from the
airfoil, the circulation approaches the value given by (4.4). When the vortex interacts
with the airfoil at finite time, however, the circulation fluctuates with maximum of the
same order as the strength of the incoming vortex. Figure 3 shows that the change in
circulation is not monotonic, which, according to the analysis given in the previous
section for the vortex shedding mechanism, implies that more than one vortex is
shed from the airfoil. This is because the fluctuations in the airfoil circulation are
balanced by the vorticity production at the trailing edge and changes in the slope of
the circulation as a function of time mean changes in the sign of the shed vorticity.
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Figure 3. Fluctuations of the circulation around an airfoil at 5◦ of angle of attack and subject to
the incidence of a vortex of strength Γ0/aU = 0.1. The asymptotic value for steady flows is given
by the large-time result of (4.4).
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Figure 4. Strengths of the vortices shed from the airfoil trailing edge at 5◦ of angle of attack
under the incidence of a vortex of strength Γ0/aU = 0.1.

This is actually the mechanism we choose for the shed vortex to break away from the
edge. According to this, figure 3 indicates that three vortices are shed from the edge.
The vorticity accumulated in these three vortices is plotted in figure 4, in terms of
the non-dimensional strength Γj/aU as a function of the non-dimensional time tU/a.
As the incoming vortex approaches the airfoil, the airfoil experiences an upwash,
leading to an increase in its lift. The increase in lift manifests itself as an increase in
circulation in the negative direction, as shown in figure 3. This circulation change is
balanced by the shedding of a positive vortex, plotted in figure 4. The strength of
this first vortex grows with time until the incoming vortex passes the centre of the
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Figure 5. Trajectories of the vortices and the streamlines of the steady mean flow (the dashed
curves). The dots on the trajectories indicate unity internals of the non-dimensional time tU/a.

airfoil and the airfoil lift starts to decrease. At this time, the first vortex breaks away
from the trailing edge and becomes a free vortex in that its strength does not change
any more. Also at this time, negative vorticity is shed, which is accumulated by the
second vortex. Again, the strength of the second negative vortex grows with time until
it reaches its maximum and its role in the flow separation modelling is taken over by
the third vortex.

The trajectories of these three shed vortices are shown in figure 5. The dots on
the trajectories indicate time intervals of 1 in terms of the non-dimensional time
tU/a. It is interesting to note that the trajectories of the vortices are quite different
from the streamlines of the base flow, also shown in figure 5 by the dashed curves.
This is because the vortices are in fully nonlinear motion, jointly controlled by the
convecting mean flow and the induced flow due to the vortices themselves. It is also
these nonlinear motions that generate sound. As explained by the theory of vortex
sound (Powell 1964; Howe 1975), vortices convecting at exactly the mean flow velocity
are silent and sound is generated only when the vortices cross the streamlines of the
mean flow.

From the strengths and trajectories of the vortices, all the quantities in the near-field
flow can be found. Of particular interest for the sound generation is the pressure
fluctuation on the airfoil surface. This can be easily found by making use of the
Bernoulli equation, which reads

ps +
1

2
ρ0

∣∣∣∣dWdη
∣∣∣∣2 + ρ0 Re

(
dW

dt

)
= p∞ +

1

2
ρ0U

2, (5.1)

where ps and p∞ are pressures respectively on the airfoil surface and at infinity and
ρ0 is the constant mean density. The symbol Re means the real part of its argument.
From this, the surface pressure can be easily calculated, in terms of Γj and ζj , by
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using the complex potential (4.3) and its derivative (4.9). Thus, we have∣∣∣∣dWdη
∣∣∣∣ =

|ζ − ζe + b|2
2πa|(ζ − ζe + b)2 − b2|

∣∣∣∣∣Γ − 4πU Im (ζe−iα) +

N∑
j=0

Γj
a2 − |ζj |2
|ζ − ζj |2

∣∣∣∣∣ , (5.2)

where ζ is now on the circle of radius a in the mapping plane, namely

ζ = a exp (iφ) with 0 6 φ < 2π. (5.3)

Similarly, the time derivative of the complex potential W can be found to be

dW

dt
=

2φN − φ
2π

dΓN
dt
− 1

π

N∑
j=0

Γj Im
dζj/dt

ζ − ζj , (5.4)

where we have introduced φN to denote the argument of ζ − ζN .
It is very easy to implement the above results numerically to calculate the surface

pressures on the airfoil. This can be done everywhere on the airfoil except at the
sharp trailing edge, which, in the mapping plane, corresponds to the point ζ = ζeα .
At this point, the first term on the right-hand side of (5.2) becomes infinite, but the
second term vanishes so that the calculation must be done as a limiting process. To
proceed with the limiting process, we rewrite (5.3) in the vicinity of the trailing-edge
point, ζe = a exp (iφe), as

ζ = a exp (iφe + iε) = ζe(1 + iε) as ε→ 0. (5.5)

By substituting this into (5.2) and expanding the result in term of the vanishing
parameter ε, it is straightforward to show that∣∣∣∣dWdη

∣∣∣∣ =
b

a2

∣∣∣∣∣aU cos (φe − α)− 1

2π

N∑
j=0

Γj
a2 − |ζj |2
|ζe − ζj |2 Im

ζe

ζe − ζj

∣∣∣∣∣ (5.6)

as ε→ 0, namely at the trailing edge of the airfoil, where φe is the argument of ζe and
α is the angle of attack of the airfoil. Clearly, this result is always finite, which leads
to finite pressure at the sharp trailing edge, as guaranteed by the Kutta condition.

It should be noted that the surface pressures do not approach the pressure at infinity
at large times, both positive and negative. This is because the airfoil experiences a
lift in steady flows, which is the large time limit when the incoming vortex is far
away from the airfoil. For acoustic computation, it is the pressure fluctuations that
are important. Thus, we will calculate the fluctuations according to the definition

∆ps = ps(xα, t)− ps(xα, t→∞), (5.7)

and normalize the results by the dynamic head of the mean flow, namely

q = 1
2
ρ0U

2. (5.8)

Some examples of the surface pressures are plotted in figure 6 for the non-dimensional
pressure as a function of the non-dimensional time. The most significant pressure
fluctuations are seen in the region close to the leading edge of the airfoil when the
incident vortex interacts with it. The incident vortex also interacts with the trailing
edge, but the shedding of vorticity at the edge reduces that interaction so that the
induced pressure fluctuations are less intense. This has been discussed previously
(Howe 1976; Amiet 1990) and is known to be the reason for the complete silence,
predicted by linear theories, when a vortex passes a trailing edge with exactly the
same velocity as the mean flow with shed vortices convecting also at that velocity.
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Figure 6. Pressure fluctuations on the airfoil surface at selected locations. The airfoil is at 5◦ of
angle of attack and the incident vortex is of strength Γ0/aU = 0.

6. Far-field computation
For low Mach number flows with rigid bodies in motion, the dominant sound

is given by the dipole term due to surface stresses in (3.6). An example of this
application is the case of airframe noise in which the typical flow Mach number is
about 0.2 and the components of the high-life systems can be regarded as rigid at
frequencies of interest to aircraft noise certification. Furthermore, viscous effects are
usually negligible so that the surface stresses reduce to surface pressures. Thus, the
sound in the far field is simply given by

p̃(xα, ω) = eik|xα|
(

k

8iπ|xα|
)1/2 ∫

s

x̂αnα∆p̃x(ηα, ωD)e−ikηαx̂α ds. (6.1)

With the surface pressure fluctuations given, such as those computed in the previous
section for the vortex/airfoil interaction, the far-field radiation can be easily calculated
from this result. This simply involves converting the surface pressure fluctuations in
a time domain to surface pressure spectra in a frequency domain and integrating the
results over the two-dimensional body. The results are basically the far-field pressure
spectra and the far-field pressure fluctuations can then be easily derived by a simple
Fourier transformation.

By following this procedure and using the surface pressure fluctuations derived in
the previous section, some examples of the far-field pressure fluctuations from the
vortex/airfoil interactions are shown in figure 7. The results are plotted in terms of
the non-dimensional pressure

p(xα, t)

q

( |xα|
a

)1/2
D3/2

M1/2
, (6.2)
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Figure 7. Far-field pressure fluctuations at different angles distance 100a away from the airfoil.
The non-dimensional pressure is defined by (6.2) and the non-dimensional retarded time by (6.3).

as a function of the non-dimensional retarded time

U

aD
(t− |xα|/c), (6.3)

where q and D are defined respectively by (5.8) and (3.7). The far-field directivity
angle θ in this figure is defined by

x1 = |xα| cos θ and x2 = |xα| sin θ. (6.4)

In calculating the results shown in figure 7, the far-field distance is taken to be |xα| =
100a and the Mach number to be M = 0.1. The far-field pressure fluctuations basically
show a pulse-like feature, having significant amplitude only when the incoming vortex
is close to the airfoil with significant interactions. The pulse-like shapes are also very
similar to those for the surface pressure fluctuations shown in figure 6.

The far-field radiation is relatively weak in the upstream and downstream directions.
This can be seen from figure 7 and is more clearly demonstrated in figure 8 in terms
of the directivity pattern of the non-dimensional radiated power. It is defined by

|xα|
a

D3

M

1

q2

∫
t

p2(xα, t) dt, (6.5)

and plotted in polar form. The far-field power shows typical dipole directivity, as is
expected. However, the dipole axis is perpendicular neither to the airfoil chord nor
to the mean flow. This is probably because the most significant radiation comes from
the interactions between the vortex and the part of the airfoil close to the leading
edge, as is seen in the surface pressure fluctuations analysed in the previous section.
The unsteady forces furnished by these interactions are not necessarily normal to
either the airfoil chord or the mean flow. Instead, the local airfoil geometry and
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Figure 8. Directivity pattern of the far-field radiation at distance 100a away from the airfoil. The
non-dimensional amplitudes are defined by (6.5).

the location of the incoming vortex determine these forces, and thus, the maximum
radiation directions in the far field.

7. Conclusions
In this paper, we have derived a version of the Ffowcs Williams/Hawkings equation

for computing far-field sound due to sources (moving body or flow) that can be
approximated as two-dimensional. This has been shown to be much more efficient than
applying the three-dimensional version to two-dimensional problems. Furthermore,
the two-dimensional version has been shown to explicitly bring out the unique features
of the far-field radiation associated with two-dimensional sources, which can provide
guidelines for understanding and interpreting physical mechanisms in engineering
applications.

A typical example is the noise from the leading-edge slats of aircraft high-lift sys-
tems. The spanwise dimensions of the slats are usually much larger than other dimen-
sions (chord and thickness) so that the sources can be regarded as two-dimensional.
In this case, the dominant contribution comes from the dipole term due to surface
pressure fluctuations: the quadrupole contributions can be neglected due to their
weakness and the monopoles are identically zero for rigid surfaces. This may explain
the fact that airframe noise intensity scales on the flow Mach number according to
the 5th power law in the middle frequency domain centred at about 1000 Hz (Sen et
al. 1997; Guo et al. 1999). This explanation, however, has not always been apparent,
because the 5th power law coincides with the prediction of sound scattered from
turbulent flows by a sharp edge (Ffowcs Williams & Hall 1970). Because of this,
airframe noise has been attributed to the sharp trailing edges of the wings (e.g. Bauer
& Munson 1978; Fink 1979). While this may explain airframe noise from clean wing
configurations when the high lift systems are not deployed (Crighton 1991), it is not
supported by recent test data (Sen et al. 1997; Guo et al. 1999). The data show that
airframe noise in the middle frequency domain is dominantly generated in the slat
region, probably due to flow separation in the cove region of the slats (Guo 1997),
instead of the trailing edges of the wings. In this case, the 5th power law is more
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likely to be associated with the two-dimensional nature of the sources, rather than the
sharp edge scattering. The sharp edges of the slats, namely their cusps and trailing
edges, are in a relatively ‘clean’ flow without intense turbulence fluctuations. Thus,
the scattering, if any, would be relatively weak because according to the theory by
Ffowcs Williams & Hall (1970), strong scattering occurs only when intense turbulence
fluctuations exist in a region close to the sharp edges within a typical wavelength.

Also important to note is that the 5th power law from sharp-edge scattering results
from the assumption of potential flow at the edge where the flow becomes singular. If
the flow is regular at the sharp edge, as commonly implied when the Kutta condition
is applied, the scattered noise would not follow the 5th power law, which is also
explicitly pointed out in Ffowcs Williams & Hall (1970). All these indicate that
the experimentally observed 5th power law of the middle frequency component in
airframe noise may be more satisfactorily understood by the two-dimensional nature
of the sources associated with the flow in the slat region, even without any sharp-edge
scattering.
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Technology Program. The author would like to thank the task monitor, Dr M. G.
Macaraeg of NASA Langley Research Center, for her support and encouragement.
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